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Machine learning (ML) approaches have the potential to create
a paradigm shift in science, especially for multi-variable
problems at different levels. Modern battery R&D is an area
intrinsically dependent on proper understanding of many
different molecular level phenomena and processes alongside
evaluation of application level performance: energy, power,
efficiency, life-length, etc. One very promising battery technol-
ogy is Li� S batteries, but the polysulfide solubility in the
electrolyte must be managed. Today, many different electrolyte

compositions and concepts are evaluated, but often in a more
or less trial-and-error fashion. Herein, we show how supervised
ML can be applied to accurately classify different Li� S battery
electrolytes a priori based on predicting polysulfide solubility.
The developed framework is a combined density functional
theory (DFT) and statistical mechanics (COSMO-RS) based
quantitative structure-property relationship (QSPR) model
which easily can be extended to other battery technologies and
electrolyte properties.

1. Introduction

Artificial intelligence (AI) has been around for quite some time,
even if the term was not coined until 1956.[1] AI is a collection
of technologies combining e.g. data handling, machine learn-
ing (ML) algorithms including artificial neural networks (ANN),
and computational power.[2] Today, AI is making significant
contributions to our day-to-day life, but furthermore also
addresses the global challenges of climate change, limited
natural resources, poverty&health, and accessible and clean
energy for all. With respect to the latter, advances in multi-scale
modelling including AI and ML/ANN have been used in modern
battery R&D, most notably for lithium-ion batteries (LIBs).[3] ML
is currently heavily applied to very fundamental LIB materials
research[4–6] for example within the MGI,[7] BIG-MAP,[8] and larger
concerted efforts such as Battery 2030+ [9] and the Faraday
Institution,[10] as well as to more practical problems, such as
optimizing the production processes[11,12] and the balance
between usage flexibility and life-length for electrification of
vehicles.[13,14]

The power and versatility of the application of ML to LIB
research was recently exemplified by the first ever AI written
book.[15] However, AI and ML might play an even more
pertinent role when it comes to R&D for next generation
batteries (NGBs). Today, the expensive trial-and-error exper-
imental development of NGB materials is supported and fast-
tracked by ML-driven computational chemistry (de novo design)
and related quantitative structure-activity/property relationship
(QSAR/QSPR).

QSAR/QSPR was developed to understand mechanisms by
combining experimental data and/or computed molecular
descriptors to explain interactions and proved to be an
effective predictive tool, controversially,[16] even in combination
with statistical approaches unique for “Big Data”. The accuracy
as well as the interpretability is largely driven by the molecular
descriptors used, which are hence subject to dedicated
research focusing on their development and selection.[17]

The Li� S battery is a NGB with a large built-in complexity,[18]

and thus many descriptors, at the molecular level; the
elemental sulfur contained in the composite C/S cathode
dissolves into the electrolyte and is converted to various
polysulfides during battery operation. Hence the very composi-
tion of the electrolyte varies as a function of the battery state-
of-charge (SOC). To predict and control the solubilities and
understand the speciation is an at large unresolved problem
whatever the Li� S battery electrolyte concept employed and
there are many concurrent lines of development.[19–22]

For this kind of systems the conductor-like screening model
for real solvents (COSMO-RS)[23–27] approach is very suited; it
combines a density functional theory (DFT) based continuum
solvation approach with statistical thermodynamics to obtain
multiple molecular descriptors of physical meaning, all related
to molecular interactions and electronic properties. Herein, we
combine different supervised ML-approaches with COSMO-RS-
based descriptors to first build a polysulfide solubility regres-
sion model and second, make a classification of different Li� S
electrolytes as salt-in-solvent, solvent-in-salt, or solvated ionic
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liquid (SIL) electrolytes (Figure 1a–c). The solubility data of
polysulfides to build regression models is hardly available due
to the complex nature of such analytical experiments. A
classification of different electrolytes regarding polysulfide
solubility, however, is a conceptual approach and potentially
suitable for a first assessment. The predictability of both models
is discussed and compared.

2. Results and Discussion

2.1. μ(σ) as Electrolyte Descriptor

In the first step of the QSPR/QSAR model development proper
descriptors for the electrolytes are obtained from the COSMO-
RS framework. The COSMO-RS model approach provides access

to several molecular descriptors and parameters, some of
physical relevance and others without. The core framework is
the calculation of molecular surface screening charges, σ. These
are often illustrated in the form of a σ-profile, depicting the
probability p(σ) to find a molecular surface segment of value σ
on the surface of a molecule. Screening charge densities > �
0.01 eÅ� 2 are considered to participate in hydrogen-bonds
(Brønsted-theory) or electron-donor-acceptor interactions
(Lewis-theory). Additionally, the σ-potential, μ(σ), quantifies the
affinity towards a σ of a specific value. In Figure 1d the physical
meaning of the interplay between μ(σ) and p(σ) is illustrated
for a SIL electrolyte, [Li(G4)]TFSI, and a polysulfide solute, Li2S8.

For the [Li(G4)]+ complexes with different degrees of G4
ether oxygen atom coordination to Li+, n=1–5, the μ(σ) for σ=

� 0.03 increases, indicating that the ability of the electrolyte to
interact with additional Li+, with the screening charge σ

Figure 1. a–c) Our conceptual approach of using COSMO-RS to obtain descriptors, develop models and validate them for classification of Li� S battery
electrolytes, and d) examples of σ-potentials for the case of a SIL electrolyte; [Li(G4)]TFSI: [Li(G4)]+ complexes with different degrees of coordination (n=1–5)
by the G4 ether oxygen atoms (top) and σ-profiles for elemental sulfur, Li+ and Na+ cations and polysulfide anions (bottom).
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distributed between � 0.03 and � 0.035 eÅ� 2, declines. The μ(σ)
of the electrolytes are nearly identical for interactions with σ
between 0 and 0.02 eÅ� 2, the σ boundaries of the S8

2�

polysulfide anion. Accordingly, the ability of the electrolyte
(solvent) to interact with Li+ determines the polysulfide
solubility, here using as proxy Li2S8,

[27] while the interaction with
the anion seems much less important, in agreement with the
common-ion effect[28] and the “excess-glyme-theory”.[29,30]

Hence, μ(σ) is a useful molecular level descriptor to directly
correlate the ability of an electrolyte to solvate polysulfides
formed during the cycling of a Li� S battery, i. e. varying as
function of SOC.

By default, the computed μ(σ) σ-potential is based on 61
datapoints between �0.03 eÅ� 2. As several are very similar
(Figure 1d) the dimensionality was here henceforth reduced to
only seven (7) datapoints: σ= �0.03, �0.02, �0.01, and
0.0 eÅ� 2 as μ(σ)-descriptors.

2.2. Regression of Polysulfide Solubility

The development of a regression model is based on electro-
lytes for which experimental data for Li2S8 solubility and the Li+

coordination details are known. First, we validate the method
by screening 127 possible combinations of the μ(σ)-descriptors
to build MLR-X models of increasing complexity X using one to
seven μ(σ)-descriptors: X=1–7; X=1: 7 combinations, X=2: 21,
X=3: 35, X=4: 35, X=5: 21, X=6: 7, X=7: 1) (Figure 1b). Due
to the small size of dataset I, a shuffled dataset split into
training and test set at a ratio of 70/30, respectively, was
chosen to improve the generalizability of the obtained MLR-
models. The MLR-X models of the same complexity X were
evaluated using the mean squared error (MSE) for the test splits
of the 30 random dataset splits, MSEtest, which indicates that an
accurate regression model has been obtained from the training
data, and ΔMSE, the difference between the MSEtrain and
MSEtest, which indicates that a MLR model built with a training
split is generalizable for the corresponding test split as well. By
studying MSE as function of X a validation for the MLR-X
approach is obtained. From this the MSEtrain decreases with
increasing complexity, while the MSEtest passes a shallow
minimum for MLR-4 (Figure 2a, Table S1).

This behaviour reflects the variance-bias trade-off, indicat-
ing that the models MLR-6 and 7 are overfitted to the training
data, whereas MLR-1 to 3 are underfitted. Accordingly, the μ(σ)-
descriptor combination of the MLR-4 model with σ= <0.02,
0.0, 0.01 and 0.03 shows the best regression of Li2S8 solubility
(Table S1).

Second, the final predictive models for all possible MLR-X
models were built using the entire dataset I and the
significance of each descriptor was assessed by its p-value
(Table S2). Here, as part of a hypothesis test, the null hypothesis
(no relationship between descriptor and Li2S8 solubility) is rejected
if its related p-value shows a probability of less than 5%,
accepting the alternative hypothesis (some relationship between
descriptor and Li2S8 solubility). In the MLR-1, 2 and 4 models, all
descriptors have p-values<5% or even <1%. For the MLR-3,

and 5 to 7 models, however, p-values >5% were obtained,
indicating that the respective descriptor is irrelevant to the
corresponding model. As all μ(σ)-descriptors originate from the
same σ-potential curve, the increasing impact of collinearity
between the descriptors in MLR-X models of higher complexity
is also anticipated. This also indicates that these MLR-models
are potentially overfitted independently of the sample size.
Surprisingly, rather than μ(� 0.03), μ(� 0.02) is the descriptor
that all MLR-X models have in common-reflecting the electro-
lyte’s ability to interact with additional Li+. For MLR-2 and MLR-
3, the descriptors μ(0.01) and μ(0.03) are introduced, respec-
tively, describing the affinity towards electron-pair donors.
Overall, the MLR-4 model [Figure 2a, c, Eq. (1)]:

log10 spredicted
� �

¼ � 8:53� m � 0:02ð Þ � 47:72� m 0:0ð Þ

119:40� m 0:01ð Þ � 1:04� m 0:03ð Þ þ 13:16
(1)

and an R2=0.99, is identified as the optimal regression model
(followed by MLR-2 (R2=0.93) and MLR-1 (R2=0.86)).

2.3. Classification of Li� S Electrolytes

As noted above, the Li� S electrolytes used are classified as
either salt-in-solvent (A), solvent-in-salt (B) or SIL (C) electro-
lytes. Similar to the development of regression models,
classification models of different complexity were scanned but
performed poorly. As the pair-plots (Figure S2) of the collected
μ(σ)-descriptors illustrate, the clearest separation between the
classes is evident for μ(�0.03), showing only a partial overlap
for A and B. Hence, only these μ(σ)-descriptors were utilized for
the further systematic development of a classification model
testing several classifier methods, including K-nearest neigh-
bours (KNN), support vector machine (SVM) with linear or radial
basis function (RBF) kernel, Gaussian Naïve Bayes (NB), and
random forest (RF). A one-vs.-rest (OvR) approach was used to
account for the multiple classes, representing each class by a
classifier and comparing it to the remaining two classifiers/
classes by receiver-operating-characteristics (ROC)-curves in-
cluding the corresponding area-under-curve (AUC) (Figure 2d).

As expected from the clearly separated C grouping in
Figure S2, most classifiers identify these SIL electrolytes with
high reliability. For electrolytes of class A and B, however, a few
false classifications are observed for all classifiers. Further, to
also account for the statistical imbalance between the classes,
i. e. 20 entities for A, 12 for B and 8 for C, the overall
performance of each classification method is evaluated by the
weighted- and micro-averaged AUC-score (Table 1).

Accordingly, KNN is the best-performing classifier. Its
decision boundaries clearly show false classification of three
class B electrolytes as class A (Figure S3). A final classification
model was built using datasets I+ II and was subsequently
applied to dataset III (Figure 2b).
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2.4 Lessons Learnt

The created MLR-4 regression and KNN classification model was
applied to the entire dataset of I+ II+ III-in total 55 electrolytes
(Table 2).

Figure 2. a) Validation of the MLR-X approach at 70/30 train/test data split, b) decision boundaries of the KNN classifier with blue, orange, green areas:
classification as A, B or C respectively; white area: no or indistinct classification, c) learning curve for the MLR-4 μ(σ)-descriptor combination (left) and observed
vs. predicted Li2S8 solubility (right), and d) ROC-curves comparing the performance of the classifiers for each class where the vertical dotted line corresponds
to an AUC of 0.5 and represents a randomly guessing classifier. KNN=K-nearest neighbours, SVM= support vector machine, NB=Gaussian Naïve Bayes,
RF= random forest.

Table 1. Ranking of classifiers based on weighted- and micro-averaged
ROC-AUC-scores with the macro-average provided for comparison.

Rank Classifier OvR-macro OvR-weighted OvR-micro

1 KNN 0.97 0.97 0.98
2 NB 0.96 0.95 0.98
3 SVM-linear 0.93 0.92 0.95
4 RF 0.94 0.92 0.95
5 SVM-RBF 0.91 0.89 0.94
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From Table 2 we can extract some more detailed informa-
tion for several sub-sets of electrolytes-both as function of salt
type and concentration as well as the solvent applied.

Starting with the role of salt concentration, the LiTFSI in
DME:DOL electrolytes have experimentally[31] been revealed to
have a transition from the salt-in-solvent (A) to the solvent-in-
salt (B) class upon increasing the LiTFSI concentration from 1 to
7 M and this is concomitant with a decreased polysulfide
solubility. From the KNN-classification the transition is found to
occur between 3–4 M-in agreement with the experimental

findings, and additionally the MLR-4 regression model confirms
the gradually decreased Li2S8 solubility-which is consistent with
the common-ion effect.[28]

For G4 and DOL:G4 solvent matrices at a constant salt
concentration of 1 M LiTFSI, however, the details in the
molecular description of the Li+-solvation i. e. using [Li(G4)]+

complexes of different degrees of ether oxygen atom coordina-
tion are irrelevant as they all result in class A electrolytes. These
also have similar Li2S8 solubilities, confirming that the “excess

Table 2. Electrolytes, their classification and Li2S8 solubility-experimental/literature and predicted (n=degree of coordination).

Electrolyte Dataset Class KNN
pred. class

Exp.
log10[s]

MLR-4
log10[s]

Ref.

DME:DOL 1 :1 (v:v) I A A 2.88 2.96 [32]
1 M LiTDI DME:DOL I A A 1.92 1.92 [33]
1 M LiTFSI DME:DOL I A A 2.70 2.70 [33]
[Li(G3n=3)1]OTf I B A 3.11 3.13 [34]
[Li(G3n=4)1]TFSI I C C 0.60 0.67 [35,36]
[Li(G4n=5)1]TFSI I C C 0.90 0.73 [35,36]
[Li(G4n=5)1]BETI I C C 0.30 0.43 [34]
[Li(THF)2]TFSI×2 THF I B A 2.24 2.20 [35,36]
THF I A A 3.00 2.98 [32]
1 M LiTFSI G4n=3 I A A 2.88 2.78 [37]
[Li(G1)1]TFSI x G1 I B B 1.4 1.52 [35,36]
[Li(G2)4/3]TFSI I C C 0.9 0.78 [35,36]
DME II A A 3.09
DOL II A A 2.74
2 M LiTFSI DME:DOL II A A 2.46 [31]
6 M LiTFSI DME:DOL II B B 1.34 [31]
7 M LiTFSI DME:DOL II B B 1.25 [31]
[Li(G3n=3)1]TFSI II B B 0.99
[Li(G3n=3)1]BETI II B B 0.89
[Li(G3n=4)1]BETI II C C 0.42
[Li(G4n=4)1]TFSI II C C 0.68
[Li(G4n=4)1]BETI II C C 0.39
[Li(G4n=1)1]TFSI II B B 0.46
[Li(G4n=2)1]TFSI II B B 0.90
G4 II A A 3.16
[Li(G3n=1)1]TFSI II B B 0.40
[Li(G3n=2)1]TFSI II B B 0.85
G3 II A A 2.92
[Li(THF)1]TFSI x 3 THF II B B 1.84
[Li(THF)4]TFSI II C C -0.04 [36]
1 M LiTFSI DOL:G4n=1 II A A 2.37
1 M LiTFSI DOL:G4n=2 II A A 2.57
1 M LiTFSI DOL:G4n=3 II A A 2.64
1 M LiTFSI DOL:G4n=4 II A A 2.66
1 M LiTFSI DOL:G4n=5 II A A 2.60
1 M LiTFSI G4n=1 II A A 2.64
1 M LiTFSI G4n=2 II A A 2.69
1 M LiTFSI G4n=4 II A A 2.83
1 M LiTFSI G4n=5 II A A 2.79
G2 II A A 2.60
3 M LiTFSI DME:DOL III A 2.01 [31]
4 M LiTFSI DME:DOL III B 1.89 [31]
5 M LiTFSI DME:DOL III B 1.62 [31]
[Li(G3n=3)1]TDI III A 2.12
[Li(G3n=4)1]OTf III A 3.53
[Li(G3n=4)1]TDI III A 2.48
[Li(G4n=4)1]OTf III A 3.42
[Li(G4n=4)1]TDI III A 2.52
[Li(G4n=5)1]OTf III A 3.63
[Li(G4n=5)1]TDI III A 2.62
[Li(G4n=3)1]TFSI III B 1.17
[Li(THF)3]TFSI x THF III A 2.16
1 M LiTFSI DOL:TTEn=1 III B 1.91
1 M LiTFSI DOL:TTEn=2 III B 2.02
[Li(G1)2]TFSI III C 1.05
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glyme”[29,30] dominates the electrolyte properties rather than
the nature of the [Li(G4)]+ complexes.

An even clearer effect is observed when replacing DME by
TTE, a fluorinated ether, as here exemplified by 1 M LiTFSI in
DOL:TTE. The KNN-classification show this to be a class B
electrolyte indicating a poor affinity towards additional Li+. This
is in, agreement with the poor solubility of Li+ controlling the
polysulfide solubility and ultimately improving the Li� S cell
cycle-life.[28]

Moving to electrolytes originally designed to be SILs, i. e.
class C, we can for example look at the [Li(THF)4-n]TFSI × n THF
electrolyte system. Experimental results indicate that the Li+

first solvation shell undergoes frequent ligand exchange, a
behaviour rather indicative of a class B electrolyte.[35,36] Here,
the KNN-classification model reveals that for n=0 this system
can indeed be considered a class C electrolyte, while for n=1
or 2 these electrolytes get falsely classified as A instead of B,
the latter expected based on the (very) high salt concentrations
applied.

Finally, we turn to an electrolyte design feature seldom
targeted for Li� S batteries � the role of the Li� salt anion. Here
four anions TFSI, BETI, OTf and TDI have been investigated. Out
of these, the TFSI and BETI anions are both sulfonyl-imides and
structurally very similar, and accordingly their Li2S8 solubilities
and furthermore, they both enable class C electrolytes in
equimolar mixtures with the glymes G3 or G4. In contrast,
however, the anions OTf and TDI show a much higher affinity
towards Li+ as some negatively charged heteroatoms are
poorly shielded (Figure S4). The tendency of LiTDI, despite TDI
being known as a weakly coordinating anion in equimolar
ratios with a glyme such as G3 or G4, to form ionic aggregates
rather than forming an SIL was recently shown by molecular
dynamics simulations.[38] The KNN-classification model results in
class A rather than C electrolyte, even though that based on
the high salt concentration a class B-type would have been
expected.

3. Conclusions

We demonstrate that the σ-potential, μ(σ), derived within the
COSMO-RS framework can be used to quantify the affinity of a
binary or ternary electrolyte to interact with additional ions.
The crucial step is found to be the molecular description of the
electrolyte and in particular the first solvation shell of the Li+

cation.
For Li� S battery electrolytes, this supervised ML approach

can ultimately be used to predict the solubility of polysulfides
and thereby classify the electrolytes more or less automatically.
However, as the dataset used herein is rather limited, its current
predictive power is rather qualitative than quantitative. The
approach can be used to explain how different electrolyte
design choices such as salt type and concentration as well as
the solvent(s) applied affects μ(σ), which apart from the here
targeted polysulfide solubility, has the promise to be a generic
descriptor for future use in combination with other types of

electrolyte and other physicochemical properties such as ionic
conductivity, viscosity, etc.

Experimental Section

Computational Details

Structures were built in the graphical user interface (GUI) of TmoleX
4.1 and the quantum chemical calculations were performed using
the TURBOMOLE[39,40] V7.0 program package. Geometries were
optimized using the BP86-functional[41,42] and TZVP basis set[43] in
gas phase and for the perfect conductor (COSMO: ɛ=1). Addition-
ally, a single point calculation at BP86/def2-TZVP//BP86/def2-
TZVPD level of theory was performed for gas phase and COSMO
phase geometries to generate a fine grid cavity surface (FINE) for
the molecules, which subsequently were saved in cosmo-files. The
COSMO-RS calculations were performed using COSMOtherm and
the BP_TZVPD_FINE_C30_1701 parametrization via the COSMO-
thermX GUI[44] to obtain the σ-potentials (μ(σ)). The (mole fraction)
composition of each electrolyte was determined based on reported
solvent-salt ratios.[26]

Datasets

The full dataset of 55 electrolytes contained binary and ternary
mixtures of solvents and different dissolved Li� Salts and was
divided into three sub-sets: (I) 12 electrolytes with experimental
references for Li2S8 solubility and electrolyte classification, (II) 28
electrolytes of anticipated class but unknown Li2S8 solubility, and
(III) 15 electrolytes of unknown class and Li2S8 solubility. A
classification model was built using the combined sub-sets I+ II,
while the regression model (see below) for prediction of Li2S8
solubility was built using only sub-set I. Pure solvents and solvent
mixtures, i. e. no Li� Salt contained, were considered as a limiting
case within the class of salt-in-solvent electrolytes.

Regression Model Development and Validation

Models were built using supervised machine learning techniques
as implemented in the open-source scikit-learn library (v0.22.1) for
the Python programming language.[45] For the prediction, a multi-
ple linear regression (MLR) technique using an ordinary least
squares (OLS) method was applied to develop the QSAR-model
correlating the COSMO-RS computed μ(σ) with the log10 of the
experimental Li2S8-solubility s (in mM). In total, 127 MLR regression
models were built and compared, each using a different complexity
X and combination of μ(σ)-descriptors (see section Results and
discussion, II. Regression). MLR models were validated using a cross-
validation algorithm over 20 random dataset splits into a training
and test set at a 70/30 ratio. The fitted models were statistically
evaluated via their respective mean-square error (MSE) according
to Eq. (2)

MSE ¼
1
N

XN

i¼1

log10 scalc
� �

� log10 sexpð Þ
� �2

(2)

and the correlation coefficient (R2). The p-value analysis was
conducted with the Python module statsmodels (v0.11.0).[46]
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Classification Model Development and Validation

The dataset I+ II contains 40 electrolytes: 20 salt-in-solvent, 12
solvent-in-salt, and 8 SILs. The dataset was randomly split at a ratio
1 :1 in a training-test set and a validation set. The former was split
again at a 1 :1 ratio 25-times using a stratified shuffle algorithm to
maintain the imbalanced class population in a training and test set
throughout the cross-validation of one-vs-rest (OvR) hyper-param-
eter grid-search. The optimised classifiers k-nearest neighbours
(KNN), support vector machine (SVM), and random forest (RF) have
all been compared based on the area-under-curve (AUC) of their
respective receiver-operator-characteristics (ROC) curves. The best
performing classifier was selected to build a predictive classification
model using the entire dataset I+ II, subsequently employed on
dataset III to create the final prediction.
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